Многие AVR имеют на борту АЦП последовательного приближения.
АЦП это десятиразрядное, но при точности +/- 2 минимально значащих разрядов его можно смело считать восьмиразрядным:) Так как в младших двух разрядах всегда мусор какой то, не похожий на полезный сигнал. Тем не менее это неплохой инструмент для контроля напряжения, в восьмиразрядном режиме имеющий 256 отсчетов и выдающее частоту дискретизации до 15кГц (15 тысяч выборок в секунду).

Конфигурация источника
Сигнал в АЦП подается через мультиплексор, с одного из восьми (в лучшем случае, часто бывает меньше) входов. Выбор входа осуществляется регистром ADMUX , а точнее его битами MUX3…MUX0 . Записанное туда число определяет выбраный вход. Например, если MUX3..0 = 0100 , то подключен вывод ADC4 .

Кроме того, существует несколько служебных комбинаций битов MUX , использующихся для калибровки.
Например, 1110 подключает к АЦП внутренний источник опорного напряжения на 1.22 вольта . А если записать в MUX3..0 все единицы, то АЦП будет изнутри посажено на землю. Это полезно для выявления разных шумов и помех.

У старших AVR семейства Mega (8535, 16, 32, 128) есть возможность включить АЦП в режиме дифференциального входа . Это когда на два входа приходят разные напряжения. Одно вычитается из другого, да еще может умножаться на коэффициент усиления. Зачем это нужно? А, например, когда надо замерить перекос напряжения измерительного моста. У какого-нибудь тензомоста при входном напряжении в пять вольт выходные сигналы будут различаться между собой всего лишь 30мВ, вот и поймай его. А так подал на диф вход, подогнал нужный коэффициент усиления и красота!

Таблицу значений MUX3..0 для диф включения я не буду тут приводить, она находится легко в даташите, зовется она «Input Channel and Gain Selections «. Я поясню лишь один тонкий момент. В режиме выбора диф входа встречаются такие комбинации как: первый вход ADC0 и второй вход тоже ADC0 ну и коэффициент усиления еще. Как так? Ведь для диф входа нужно два разных входа! Вначале подумал опечатка, поднял даташит на другую АВРку — та же ботва. Потом повтыкал в текст ниже и понял — это для калибровки нуля. Т.е. перед началом съема диф данных нам нужно закоротить входы, чтобы понять, что же у нас ноль. Так вот, комбинация когда два входа подключены к одной ноге это и есть та самая калибровочная закоротка входов. Делаешь первое преобразование на такой фигне, получаешь смещение нуля . А потом вычитаешь его из всех полученных значений, что резко повышает точность.

Мультиплексирование каналов осуществляется только после того, как завершится преобразование, поэтому можно смело запускать АЦП на обсчет входных значений, записывать в MUX3..0 параметры другого входа, и готовится снимать данные уже оттуда.

Выбор опорного сигнала
Это максимальное напряжение, которое будет взято за максимум при измерениях. Опорное напряжение должно быть как можно стабильней, без помех и колебаний — от этого кардинальным образом зависит точность работы АЦП . Задается он в битах REFS1..0 регистра ADMUX .

  • По дефолту там стоит REFS1..0 = 00 — внешний ИОН , подключенный к входу AREF . Это может быть напряжение со специальной микросхемы опорного напряжения, или же со стабилитрона какого, если нужно замерять небольшое напряжение, заметно меньшее чем напряжение питания, скажем от 0 до 1 вольт, то чтобы было точнее, и чтобы оно не затерялось на фоне пятивольтового питания, то на AREF мы заводим опорное напряжение в 1 вольт.
  • REFS1..0 = 01 — тут просто берется напряжение питания. У всех почти Мег с АЦП есть вход AVCC — вот это напряжение питания для AЦП и порта на который это АЦП повешено. Подавать туда плюс питания желательно через LC фильтр, чтобы не было искажений.
  • REFS1..0 = 11 — внутренний источник опорного напряжения на 2.56 вольт . Честно говоря, качество этого источника мне сильно не понравилось. С ним показания АЦП плавают как говно в проруби. Но если невозможно обеспечить гладкую и стабильную подачу напряжения на AREF или AVCC то прокатит. Кстати, внутренний ИОН подключен к выводу AREF так что можно повесить туда кондер и попробовать его чуть чуть сгладить. Немного, но помогает.
Выбор режима запуска преобразования
В регистре SFIOR под АЦП отведено аж три бита. ADTS2..0 которые управляют режимами запуска АЦП .
  • По дефолту ADTS2..0 = 000 и это значит, что преобразование идет в непрерывном режиме. Ну или по ручному запуску.
  • ADTS2..0 = 001 — запуск АЦП от аналогового компаратора. Удобно блин. Например, чтобы не замерять постоянно входную величину, а запрограммировать компаратор на то, что как только у него вылезет что-либо выше порога, так тут же захватывать это дело на АЦП .
  • ADTS2..0 = 010 — запуск от внешнего прерывания INT0
  • ADTS2..0 = 011 — по совпадению таймера T0
  • ADTS2..0 = 100 — по переполнению таймера Т0
  • ADTS2..0 = 101 — по совпадению с таймера Т1
  • ADTS2..0 = 110 — По переполнению таймера Т1
  • ADTS2..0 = 111 — По событию «захват» таймера Т1
Скорость работы АЦП
Частота выборки АЦП задается в битах предделителя ADPS2…0 регистра ADCSR . Саму таблицу можно поглядеть в даташите на соответствующий МК, скажу лишь то, что самая оптимальная точность работы модуля АЦП находится в пределах 50…200кГц , поэтому предделитель стоит настраивать исходя из этих соображений. С повышением частоты точность падает.

Прерывания.
Естественно у АЦП есть прерывания. В данном случае это прерывание по окончанию преобразования. Его можно разрешить битом ADIE , а внаглую вручную палится оно по флагу ADIF (регистр ADCSRA ). Флаг ADIF автоматом снимается при уходе на вектор прерывания по АЦП .

Данные с АЦП сваливаются в регистровую пару ADCH:ADCL откуда их можно забрать. Причем тут есть один прикольный момент. Регистровая пара то у нас ведь 16ти разрядная, а АЦП имеет разрядность 10бит . В итоге, лишь один регистр занят полностью, а второй занимает лишь оставшиеся два бита. Так вот, выравнивание может быть как по правому краю — старшие два бита в ADCH , а младшие в ADCL , либо по левому — старшие биты в ADCH , а два младших бита в ADCL .

[x][x][x][x][x][x]: или : [x][x][x][x][x][x]


Зачем это сделано? А это выборка разрядности так оригинально организована. Как я уже говорил, в младших разрядах все равно мусор и шумы (по крайней мере я от них так и не смог избавиться, как ни старался) . Так вот. Делаем выравнивание по левому краю. И загребаем старшие разряды только из регистра ADCH , а на младший забиваем. Итого, у нас число отсчетов становится 256. За выравнивание отвечает бит ADLAR в регистре ADMUX 0 — выравнивание по правой границе, 1 — по левой.

Запуск преобразования в ручном или непрерывном режиме.
Для запуска преобразования нужно вначале разрешить работу ADC , установкой бита ADEN в регистре ADCSR и в том же регистре ткнуть в бит ADSC . Для запуска непрерывного преобразование (одно за другим) нужно также выставить бит ADFR (ADATE в некоторых AVR ).

Повышение точности уходом в спячку.
Для повышения точности, чтобы внутренние цепи АЦП не гадили своими шумами, можно запустить АЦП в спящем режиме . Т.е. проц останавливается, все замирает. Работает только WatchDog и блок АЦП . Как только данные сосчитаются, генерируется прерывание которое будит процессор, он уходит на обработчик прерывания от АЦП и дальше все своим чередом.

А теперь приведу парочку примеров простой инициализации и работы с АЦП . Микроконтроллер ATMega16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 <Сигнал на вход идет с нулевого канала АЦП.

; Мой любимый макрос для записи в порты:)))) .MACRO outi LDI R16,@1 OUT @0,R16 .ENDM ; ADC Init - Инициализурем АЦП. Это можно сунуть куда - нибудь в начало кода OUTI ADCSRA,(1<Сигнал на вход идет с нулевого канала АЦП.

А что дальше делать? А ничего! Сидеть и ждать прерывания!
Когда оно придет процессор кинет на вектор и дальше уже можно либо переписать данные из ADCH:ADCL в другое место, либо какую простенькую обработку тут же, не отходя от кассы, замутить. Вроде усреднения.

Вариант два, с уходом в спячку. В принципе, все то же самое, только нужно выключить автоматический перезапуск конвертирования. Далее в регистре MCUCR в битах SM2..0 выбрать режим ADC Noise Reduction SM2..0 = 001 , а после, сразу же после запуска послать процессор в спячку командой SLEEP . Как только он уснет заработает АЦП, сделает преобразование и проснется на прерывании.

Выглядит это так:

; ADC Init - Инициализурем АЦП. Это можно сунуть куда - нибудь в начало кода OUTI ADMUX,0b01000101 ;А тут выбираем откуда брать будем сигнал;REFS -- 0b000101 первые два бита - напряжение с входа AVCC ;ADLAR --0b0100101следующий бит выравнивание по правому краю;MUX -- 0b010Сигнал на вход идет с 5й ноги. OUTI MCUCR,0b10010000 ; Выставил биты спящего режима в Noise Reduction ; А это уже тело главной программы Main Prog: OUTI ADCSRA,(1<

Ну и, для повышения точности, следует соблюдать ряд правил по подключению питания к АЦП модулю, например подавать напряжение на вход AVCC через дроссель, ставить конденсаторы и земли побольше вокруг. Об этом все есть в даташите. Я же скоро выложу пример рабочей программы — примера для АЦП и UART .

Урок 22

Часть 1

Изучаем АЦП

Сегодня мы начнем изучать очень интересную технологию, а для микроконтроллера — периферию — это аналго-цифровой преобразователь или как его называют АЦП . В английской аббревиатуре, гораздо чаще встречающейся в технической документации — ADC (Analog-to-Digital Converter ). Это такая штука, которая преобразует величину электрического сигнала в цифровой код. Затем данный код мы уже используем для обработки или для отображения тем или иным образом данной электрической величины. Это очень распространённая периферия или технология. АЦП активно используется в звукозаписи, измерительной технике, видеозаписи и во многих других случаях. Поэтому нас обойти данную вещь стороной никак не получится, тем более АЦП поддерживается аппаратно в контроллерах AVR .

В контроллере Atmega8 АЦП имеет следующие характеристики

  • Разрешение 10 бит,
  • Время преобразования одного показания от 13 до 250 микросекунд в зависимости от битности измерения, а также от тактовой частоты генератора, тактирующего контроллер,
  • Поддержка запуска по прерываниям,

Есть ещё масса различных характеристик, с которыми мы, возможно, познакомимся в дальнейшем.

Как вообще работает цифровое преобразование?

Берётся опорное напряжение и сравнивается с измеряемым. Соответственно, опорное напряжение всегда должно быть больше измеряемого. Если это не так, то нужно будет применять делители напряжения.

Изобразим схематично процесс измерения

Отрезок — это диапазон измерений. Он находится между нулём и опорным напряжением. А стрелка — это измеряемое напряжение.

Данный отрезок делится пополам, и АЦП оценивает, в какой половине находится приложенное напряжение

Если оно находится в стороне нуля, то в самый старший бит результата записывается 0, а если в стороне максимального напряжения, то единица. У нас будет единица. Затем та половина отрезка, на которой находится измеряемое напряжение делится ещё пополам, и АЦП опять измеряет, в какой половинке уже данного отрезка у нас находится измеряемое напряжение

Оценка идёт по тому же принципу — в какой стороне отрезок. В нашем случае будет 0. И этот ноль записывается в следующий более младший бит

Затем та четвертинка опять делится пополам и АЦП опять оценивает,где находится отрезок

И АЦП так и продолжает такой процесс до тех пор, пока не кончатся ячейки для битов. То есть если мы используем 10-битный режим, то. соответственно, и будет 10 подобных измерений и заполнятся 10 бит величины. Чем больше бит, тем точнее результат, но уже потребуется на это больше времени и более серьёзный и точный АЦП. Имея данный результат, нам несложно будет посчитать величину измеренного напряжения. Мы знаем. что если у нас АЦП 10-битный, то данный результат у нас лежит в промежутке от 0 до 1024, получаемтся всего у нас 1023 отрезка. И мы затем наш результат делим на 1023 и умножаем на величину опорного напряжения.

Посмотрим блок-схему АЦП в контроллере Atmega8

Мы видим, что у нас есть мультиплексор, имеющий 8 каналов, вход для опрного напряжения AREF. Также существует 8-разрядная шина данных, значения с которых записываются в определённый регистр. Есть регистр данных, регистр управления и состояния, а также регистр управления мультиплексором.

Мы будем использовать самый первый вход ADC0 и в качестве источника измеряемого напряжения будем использовать центральную ножку переменного резистора, подлключенного к контактам питания

Работать будем сначала в протеусе. Также мы видим, что у нас подключен дисплей самым обычным образом.

Также мы всё подключим и на живом контроллере

Существует несколько вариантов опорных напряжений, которые мы можем использовать.в нашем АЦП. Мы будем использовать внутреннее опорное напряжение на 2,56 вольт, оно проще, не нужно ничего подключать. Возможно, при таком варианте не очень сильная точность, но перед нами не стоит задача создать точный измерительный прибор. У нас есть задача — изучить возможность использования АЦП в контроллере AVR.

А вот и таблица вариантов опроных напряжений для АЦП

Перечислим данные варианты сверху вних по таблице. 1 вариант — это внутреннее опорное напряжение, равное напряжению питания, 2 вариант — опорное напряжение подаётся на вход AREF извне, 3 вариант — внутреннее 2,56 вольт с использованием внешнего конденсатора, которы у нас уже припаян к отладочной плате к определённым ножкам контроллера.

Также в АЦП есть делитель частоты на величину от 2 до 128. Делитель этот для того, чтобы мы добивались частоты работы АЦП не больше 200 кГц, иначе точность измерений будет очень малой и мы просто растеряем самые младшие биты. Если у нас возникнет требование имено к скорости измерений и нам уже точность будет на так важна, то мы сможем использовать и более высокие частоты измерений.

Теперь немного поближе познакомимся с регистрами АЦП.

Регистр ADCSRA — управляющий и статусный регистр

Теперь побитно.

ADEN — данный бит включает АЦП.

ADSC — при установке в 1 заставляет АЦП начинать преобразование.

ADFR — используется в режиме с использованием прерываний. При установке в 1 включает круговой режим, при котором измерения автоматически следуют одно за другим.

ADIF — бит, также используемый только в режиме прерываний. Это флаг прерываний, который устанавливается в определённых условиях.

ADIE — бит, включающий режим прерываний.

ADPS2-ADPS0 — биты, от комбинации которых зависит величина делителя

Регистр ADMUX — это регистр для управления каналами мультиплексора АЦП

Но, помимо непосредственно битов управления каналами у данного регистра есть ещё некоторые управляющие биты

REFS1-REFS0 — биты, включающие определённый режим использования опорного напряжения. Таблица была размещена на данной странице выше.

ADLAR — это бит организации расположения измеренных 10 битов в двух байтах регистровой пары данных. Поближе мы с этим расположением познакомимся чуть позже.

MUX3-MUX0 — биты, включающие определённый канал мультиплексора

Отсюда видно, что мы можем пользоваться несколькими каналами сразу только по очереди, попеременно включая различные комбинации данных битов. Также внизу есть две комбинации для калибровки нашего АЦП.

Ну и, наконец, регистровая пара ADCH и ADCL , состоящая из старшего и младшего байта в которую и заносится измеряемый результат. А как именно он туда укладывается, этот результат, зависит от состояния бита ADLAR, рассмотренного выше в регистре ADMUX

То есть, если бит ADLAR не выставлен, то младшие 8 бит результата находятся в младшем байте регистровой пары, а 2 старших бита — в младших битах старшего байта. Если же бит ADLAR у нас выставлен, то 8 самых старших бит результата находятся в сатршем байте, а 2 младших в 2 старших битах младшего байта регистровой пары. Второй вариант нам интересен при исользовании 8-битного режима. В данном случае мы читаем только старший байт.

Проект был создан полностью из проекта Test09 и был назван MyADCLCD .

Также для выноса кода для реализации периферии АЦП были созданы стандартным образом два файла adc.h и adc.c . Соответственно файл adc.h был подключен и в файле main.h и в adc.c.

В файл MyADCLCD.c код был также полностью скопирован из главного файла проекта Test09, всё лишнее было удалено. Код в данном файле после данной операции принял следующий вид

#include "main.h"

//—————————————-

void port_ini ( void )

PORTD =0x00;

Давайте рассмотрим основной спектр вопросов, которые можно отнести к принципу действия разных типов. Последовательный счет, поразрядное уравновешивание - что скрывается за этими словами? В чем заключается принцип работы АЦП микроконтроллера? Эти, а также ряд других вопросов мы рассмотрим в рамках статьи. Первые три части мы посвятим общей теории, а с четвертого подзаголовка будем изучать принцип их работы. Вы можете в различной литературе встречать термины АЦП и ЦАП. Принцип работы этих устройств немного различается, поэтому не путайте их. Так, в статье будет рассматриваться из аналоговой формы в цифровую, в то время как ЦАП работает наоборот.

Определение

Прежде чем рассматривать принцип работы АЦП, давайте узнаем, что это за устройство. Аналого-цифровые преобразователи являются приборами, которые физическую величину превращают в соответствующее числовое представление. В качестве начального параметра может выступать практически всё что угодно - ток, напряжение, емкость, сопротивление, угол поворота вала, частота импульсов и так далее. Но чтобы иметь определённость, мы будем работать только с одним преобразованием. Это "напряжение-код". Выбор такого формата работы не случаен. Ведь АЦП (принцип работы этого устройства) и его особенности в значительной мере зависят от того, какое понятие измерения используется. Под этим понимают процесс сравнения определённой величины с ранее установленным эталоном.

Характеристики АЦП

Основными можно назвать разрядность и частоту преобразования. Первую выражают в битах, а вторую - в отсчетах на секунду. Современные аналого-цифровые преобразователи могут обладать разрядностью 24 бита или скоростью преобразования, которая доходит до единиц GSPS. Обратите внимание, что АЦП может одновременно предоставлять вам в использование только одну свою характеристику. Чем большие их показатели, тем сложнее работать с устройством, да и оно само стоит дороже. Но благо можно получить необходимые показатели разрядности, пожертвовав скоростью работы прибора.

Типы АЦП

Принцип работы разнится у различных групп устройств. Мы рассмотрим следующие типы:

  1. С прямым преобразованием.
  2. С последовательным приближением.
  3. С параллельным преобразованием.
  4. Аналого-цифровой преобразователь с балансировкой заряда (дельта-сигма).
  5. Интегрирующие АЦП.

Есть много других конвейерных и комбинированных типов, которые обладают своими особенными характеристиками с разной архитектурой. Но те образцы, которые будут рассматриваться в рамках статьи, представляют интерес благодаря тому, что они играют показательную роль в своей нише устройств такой специфики. Поэтому давайте будем изучать принцип работы АЦП, а также его зависимость от физического устройства.

Прямые аналого-цифровые преобразователи

Они стали весьма популярными в 60-70-х годах прошлого столетия. В виде производятся с 80-х гг. Это весьма простые, даже примитивные устройства, которые не могут похвастаться значительными показателями. Их разрядность обычно составляет 6-8 бит, а скорость редко превышает 1 GSPS.

Принцип работы АЦП данного типа таков: на плюсовые входы компараторов одновременно поступает входной сигнал. На минусовые выводы подается напряжение определённой величины. А затем устройство определяет свой режим работы. Это делается благодаря опорному напряжению. Допустим, что у нас есть устройство, где 8 компараторов. При подаче ½ опорного напряжения будет включено только 4 из них. Приоритетным шифратором сформируется который и зафиксируется выходным регистром. Относительно достоинств и недостатков можно сказать, работы позволяет создавать быстродействующие устройства. Но для получения необходимой разрядности приходится сильно попотеть.

Общая формула количества компараторов выглядит таким образом: 2^N. Под N необходимо поставить количество разрядов. Рассматриваемый ранее пример можно использовать ещё раз: 2^3=8. Итого для получения третьего разряда необходимо 8 компараторов. Таков принцип работы АЦП, которые были созданы первыми. Не очень удобно, поэтому в последующем появились другие архитектуры.

Аналого-цифровые преобразователи последовательного приближения

Здесь используется алгоритм «взвешивания». Сокращенно устройства, работающие по такой методике, называют просто АЦП последовательного счета. Принцип работы таков: устройством измеряется величина входного сигнала, а потом она сравнивается с числами, которые генерируются по определённой методике:

  1. Устанавливается половина возможного опорного напряжения.
  2. Если сигнал преодолел предел величины из пункта №1, то сравнивается с числом, которое лежит посредине между оставшимся значением. Так, в нашем случае это будет ¾ опорного напряжения. Если опорный сигнал не дотягивает до этого показателя, то сравнение будет проводиться с другой частью интервала по такому же принципу. В данном примере это ¼ опорного напряжения.
  3. Шаг 2 необходимо повторить Н раз, что даст нам Н бит результата. Это благодаря проведению Н количества сравнений.

Данный принцип работы позволяет получать устройства с относительной высокой скоростью преобразования, которыми и являются АЦП последовательного приближения. Принцип работы, как видите, прост, и данные приборы отлично подходят для различных случаев.

Параллельные аналого-цифровые преобразователи

Они работают подобно последовательным устройствам. Формула расчета - (2^Н)-1. Для рассматриваемого ранее случая нам понадобится (2^3)-1 компараторов. Для работы используется определённый массив этих устройств, каждое из которых может сравнивать входное и индивидуальное опорное напряжение. Параллельные аналого-цифровые преобразователи являются довольно быстрыми приборами. Но принцип построения этих устройств таков, что для поддержки их работоспособности необходима значительная мощность. Поэтому использовать их при батарейном питании нецелесообразно.

Аналого-цифровой преобразователь с поразрядным уравновешиванием

Он действует по похожей схеме, что и предыдущее устройство. Поэтому чтобы объяснить функционирование АЦП поразрядного уравновешивания, принцип работы для начинающих будет рассмотрен буквально на пальцах. В основе данных устройств лежит явление дихотомии. Иными словами, проводится последовательное сравнение измеряемой величины с определённой частью максимального значения. Могут браться значения в ½, 1/8, 1/16 и так далее. Поэтому аналого-цифровой преобразователь может выполнить весь процесс за Н итераций (последовательных шагов). Причем Н равняется разрядности АЦП (посмотрите на ранее приведённые формулы). Таким образом, мы имеем значительный выигрыш во времени, если особенно важным является быстродействие техники. Несмотря на значительную скорость, эти устройства также характеризуются низкой статической погрешностью.

Аналого-цифровые преобразователи с балансировкой заряда (дельта-сигма)

Это самый интересный тип устройства, не в последнюю очередь благодаря своему принципу работы. Он заключается в том, что происходит сравнение входного напряжения с тем, что накопилось интегратором. На вход подаются импульсы с отрицательной или положительной полярностью (всё зависит от результата предыдущей операции). Таким образом, можно сказать, что подобный аналого-цифровой преобразователь является простой следящей системой. Но это только как пример для сравнения, чтобы вы могли понимать, АЦП. Принцип работы системный, но для результативного функционирования этого аналого-цифрового преобразователя мало. Конечным результатом является нескончаемый поток единиц и нулей, который идёт через цифровой ФНЧ. Из них формируется определённая битная последовательность. Различают АЦП-преобразователи первого и второго порядков.

Интегрирующие аналого-цифровые преобразователи

Это последний частный случай, который будет рассмотрен в рамках статьи. Далее мы будем описывать принцип работы данных устройств, но уже на общем уровне. Этот АЦП является аналого-цифровым преобразователем с двухтактным интегрированием. Встретить подобное устройство можно в цифровом мультиметре. И это не удивительно, ведь они обеспечивают высокую точность и одновременно хорошо подавляют помехи.

Теперь давайте сосредоточимся на его принципе работы. Он заключается в том, что входным сигналом заряжается конденсатор на протяжении фиксированного времени. Как правило, этот период составляет единицу частоты сети, которая питает устройство (50 Гц или 60 Гц). Также он может быть кратным. Таким образом, подавляются высокочастотные помехи. Одновременно нивелируется влияние нестабильного напряжения сетевого источника получения электроэнергии на точность полученного результата.

Когда оканчивается время заряда аналого-цифрового преобразователя, конденсатор начинает разряжаться с определённой фиксированной скоростью. Внутренний счетчик устройства считает количество тактовых импульсов, которые формируются во время этого процесса. Таким образом, чем больше временной промежуток, тем значительнее показатели.

АЦП двухтактного интегрирования обладают высокой точностью и Благодаря этому, а также сравнительно простой структуре построения они выполняются как микросхемы. Основной недостаток такого принципа работы - зависимость от показателя сети. Помните, что его возможности привязаны к длительности частотного периода источника питания.

Вот как устроен АЦП двойного интегрирования. Принцип работы данного устройства хотя и является довольно сложным, но он обеспечивает качественные показатели. В некоторых случаях такое бывает просто необходимым.

Выбираем АПЦ с необходимым нам принципом работы

Допустим, перед нами стоит определенная задача. Какое выбрать устройство, чтобы оно могло удовлетворить все наши запросы? Для начала давайте поговорим про разрешающую способность и точность. Очень часто их путают, хотя на практике они очень слабо зависят один от второго. Запомните, что 12-разрядный аналого-цифровой преобразователь может иметь меньшую точность, чем 8-разрядный. В этом случае разрешение - это мера того, какое количество сегментов может быть выделено с входного диапазона измеряемого сигнала. Так, 8-разрядные АЦП обладают 2 8 =256 такими единицами.

Точность - это суммарное отклонение полученного результата преобразования от идеального значения, которое должно быть при данном входном напряжении. То есть первый параметр характеризует потенциальные возможности, которые имеет АЦП, а второй показывает, что же мы имеем на практике. Поэтому нам может подойти и более простой тип (например, прямые аналого-цифровые преобразователи), который позволит удовлетворить потребности благодаря высокой точности.

Чтобы иметь представление о том, что нужно, для начала необходимо просчитать физические параметры и построить математическую формулу взаимодействия. Важными в них являются статические и динамические погрешности, ведь при использовании различных компонентов и принципов построение устройства они будут по-разному влиять на его характеристики. Более детальную информацию можно обнаружить в технической документации, которую предлагает производитель каждого конкретного прибора.

Пример

Давайте рассмотрим АЦП SC9711. Принцип работы данного устройства сложен ввиду его размера и возможностей. Кстати, говоря о последних, необходимо заметить, что они по-настоящему разнообразные. Так, к примеру, частота возможной работы колеблется от 10 Гц до 10 МГц. Иными словами, оно может делать 10 млн отсчетов в секунду! Да и само устройство не является чем-то цельным, а имеет модульную структуру построения. Но используется оно, как правило, в сложной технике, где необходимо работать с большим количеством сигналов.

Заключение

Как видите, АЦП в своей основе имеют различные принципы работы. Это позволяет нам подбирать устройства, которые удовлетворят возникшие запросы, и при этом позволят разумно распорядиться имеющимися средствами.

Отличительные особенности:

  • 10-разрядное разрешение
  • Интегральная нелинейность 0.5 мл. разр.
  • Абсолютная погрешность ±2 мл. разр.
  • Время преобразования 65 - 260 мкс.
  • Частота преобразования до 15 тыс. преобр. в сек. при максимальном разрешении
  • 8 мультиплексированных однополярных входов
  • 7 дифференциальных входных каналов
  • 2 дифференциальных входных канала с опциональным усилением на 10 и 200
  • Представление результата с левосторонним или правосторонним выравниванием в 16-разр. слове
  • Диапазон входного напряжения АЦП 0…VCC
  • Выборочный внутренний ИОН на 2.56 В
  • Режимы одиночного преобразования и автоматического перезапуска
  • Прерывание по завершении преобразования АЦП
  • Механизм подавления шумов в режиме сна

ATmega128 содержит 10-разр. АЦП последовательного приближения. АЦП связан с 8-канальным аналоговым мультиплексором, 8 однополярных входов которого связаны с линиями порта F. Общий входных сигналов должен иметь потенциал 0В (т.е. связан с GND). АЦП также поддерживает ввод 16 дифференциальных напряжений. Два дифференциальных входа (ADC1, ADC0 и ADC3, ADC2) содержат каскад со ступенчатым программируемым усилением: 0 дБ (1x), 20 дБ (10x), или 46 дБ (200x). Семь дифференциальных аналоговых каналов используют общий инвертирующий вход (ADC1), а все остальные входы АЦП выполняют функцию неинвертирующих входов. Если выбрано усиление 1x или 10x, то можно ожидать 8-разр. разрешение, а если 200x, то 7-разрядное.

АЦП содержит УВХ (устройство выборки-хранения), которое поддерживает на постоянном уровне напряжение на входе АЦП во время преобразования. Функциональная схема АЦП показана на рисунке 108.

АЦП имеет отдельный вывод питания AVCC (аналоговое питание). AVCC не должен отличаться более чем на ± 0.3В от VCC. См. параграф “ ”, где приведены рекомендации по подключению этого вывода.

В качестве внутреннего опорного напряжения может выступать напряжение от внутреннего ИОНа на 2.56В или напряжение AVCC. Если требуется использование внешнего ИОН, то он должен быть подключен к выводу AREF с подключением к этому выводу блокировочного конденсатора для улучшения шумовых характеристик.

Рисунок 108 - Функциональная схема аналогово-цифрового преобразователя

Принцип действия

АЦП преобразовывает входное аналоговое напряжение в 10-разр. код методом последовательных приближений. Минимальное значение соответствует уровню GND, а максимальное уровню AREF минус 1 мл. разр. К выводу AREF опционально может быть подключено напряжение AVCC или внутренний ИОН на 1.22В путем записи соответствующих значений в биты REFSn в регистр ADMUX. Несмотря на то, что ИОН на 2.56В находится внутри микроконтроллера, к его выходу может быть подключен блокировочный конденсатор для снижения чувствительности к шумам, т.к. он связан с выводом AREF.

Канал аналогового ввода и каскад дифференциального усиления выбираются путем записи бит MUX в регистр ADMUX. В качестве однополярного аналогового входа АЦП может быть выбран один из входов ADC0…ADC7, а также GND и выход фиксированного источника опорного напряжения 1,22 В. В режиме дифференциального ввода предусмотрена возможность выбора инвертирующих и неинвертирующих входов к дифференциальному усилителю.

Если выбран дифференциальный режим аналогового ввода, то дифференциальный усилитель будет усиливать разность напряжений между выбранной парой входов на заданный коэффициент усиления. Усиленное таким образом значение поступает на аналоговый вход АЦП. Если выбирается однополярный режим аналогового ввода, то каскад усиления пропускается

Работа АЦП разрешается путем установки бита ADEN в ADCSRA. Выбор опорного источника и канала преобразования не возможно выполнить до установки ADEN. Если ADEN = 0, то АЦП не потребляет ток, поэтому, при переводе в экономичные режимы сна рекомендуется предварительно отключить АЦП.

АЦП генерирует 10-разрядный результат, который помещается в пару регистров данных АЦП ADCH и ADCL. По умолчанию результат преобразования размещается в младших 10-ти разрядах 16-разр. слова (выравнивание справа), но может быть опционально размещен в старших 10-ти разрядах (выравнивание слева) путем установки бита ADLAR в регистре ADMUX.

Практическая полезность представления результата с выравниванием слева существует, когда достаточно 8-разрядное разрешение, т.к. в этом случае необходимо считать только регистр ADCH. В другом же случае необходимо первым считать содержимое регистра ADCL, а затем ADCH, чем гарантируется, что оба байта являются результатом одного и того же преобразования. Как только выполнено чтение ADCL блокируется доступ к регистрам данных со стороны АЦП. Это означает, что если считан ADCL и преобразование завершается перед чтением регистра ADCH, то ни один из регистров не может модифицироваться и результат преобразования теряется. После чтения ADCH доступ к регистрам ADCH и ADCL со стороны АЦП снова разрешается.

АЦП генерирует собственный запрос на прерывание по завершении преобразования. Если между чтением регистров ADCH и ADCL запрещен доступ к данным для АЦП, то прерывание возникнет, даже если результат преобразования будет потерян.

Запуск преобразования

Одиночное преобразование запускается путем записи лог. 1 в бит запуска преобразования АЦП ADSC. Данный бит остается в высоком состоянии в процессе преобразования и сбрасывается по завершении преобразования. Если в процессе преобразования переключается канал аналогового ввода, то АЦП автоматически завершит текущее преобразование прежде, чем переключит канал.

В режиме автоматического перезапуска АЦП непрерывно оцифровывает аналоговый сигнал и обновляет регистр данных АЦП. Данный режим задается путем записи лог. 1 в бит ADFR регистра ADCSRA. Первое преобразование инициируется путем записи лог. 1 в бит ADSC регистра ADCSRA. В данном режиме АЦП выполняет последовательные преобразования, независимо от того сбрасывается флаг прерывания АЦП ADIF или нет.

Предделитель и временная диаграмма преобразования


Рисунок 109 – Предделитель АЦП

Если требуется максимальная разрешающая способность (10 разрядов), то частота на входе схемы последовательного приближения должна быть в диапазоне 50…200 кГц. Если достаточно разрешение менее 10 разрядов, но требуется более высокая частота преобразования, то частота на входе АЦП может быть установлена свыше 200 кГц.

Модуль АЦП содержит предделитель, который формирует производные частоты свыше 100 кГц по отношению к частоте синхронизации ЦПУ. Коэффициент деления устанавливается с помощью бит ADPS в регистре ADCSRA. Предделитель начинает счет с момента включения АЦП установкой бита ADEN в регистре ADCSRA. Предделитель работает пока бит ADEN = 1 и сброшен, когда ADEN=0.

Если инициируется однополярное преобразование установкой бита ADSC в регистре ADCSRA, то преобразование начинается со следующего нарастающего фронта тактового сигнала АЦП. Особенности временной диаграммы дифференциального преобразования представлены в “ ”.

Нормальное преобразование требует 13 тактов синхронизации АЦП. Первое преобразование после включения АЦП (установка ADEN в ADCSRA) требует 25 тактов синхронизации АЦП за счет необходимости инициализации аналоговой схемы.

После начала нормального преобразования на выборку-хранение затрачивается 1.5 такта синхронизации АЦП, а после начала первого преобразования – 13,5 тактов. По завершении преобразования результат помещается в регистры данных АЦП и устанавливается флаг ADIF. В режиме одиночного преобразования одновременно сбрасывается бит ADSC. Программно бит ADSC может быть снова установлен и новое преобразование будет инициировано первым нарастающим фронтом тактового сигнала АЦП.

В режиме автоматического перезапуска новое преобразование начинается сразу по завершении предыдущего, при этом ADSC остается в высоком состоянии. Времена преобразования для различных режимов преобразования представлены в таблице 95.


Рисунок 110 – Временная диаграмма работы АЦП при первом преобразовании в режиме одиночного преобразования


Рисунок 111 – Временная диаграмма работы АЦП в режиме одиночного преобразования


Рисунок 112 – Временная диаграмма работы АЦП в режиме автоматического перезапуска

Таблица 95 – Время преобразования АЦП

Каналы дифференциального усиления

Если используются каналы дифференциального усиления, то необходимо принять во внимание некоторые особенности.

Дифференциальные преобразования синхронизированы по отношению к внутренней синхронизации CKАЦП2, частого которого равна половине частоты синхронизации АЦП. Данная синхронизация выполняется автоматически интерфейсом АЦП таким образом, чтобы выборка-хранение инициировалась определенным фронтом CKАЦП2. Если преобразование (все одиночные преобразования и первое преобразование в режиме автоматического перезапуска) инициировалось пользователем, когда CKАЦП2 находился в низком лог. состоянии, то его длительность будет эквивалента однополярному преобразованию (13 тактов синхронизации АЦП). Если преобразование инициируется пользователем, когда CKАЦП2 равен лог. 1 , оно будет длиться 14 тактов синхронизации АЦП вследствие работы механизма синхронизации. В режиме автоматического перезапуска новое преобразование инициируется сразу по завершении предыдущего, а т.к. в этот момент CKАЦП2 равен лог. 1, то все преобразования, которые были автоматически перезапущены (т.е. все, кроме первого), будут длиться 14 тактов синхронизации АЦП. Усилительный каскад оптимизирован под частотный диапазон до 4 кГц для любых коэффициентов усиления. Усиление сигналов более высоких частот будет нелинейным. Поэтому, если входной сигнал содержит частотные составляющие выше частотного диапазона усилительного каскада, то необходимо установить внешний фильтр низких частот. Обратите внимание, что частота синхронизации АЦП не связана с ограничением по частотному диапазону усилительного каскада. Например, период синхронизации АЦП может быть 6 мкс, при котором частота преобразования канала равна 12 тыс. преобр. в секунду, независимо от частотного диапазона этого канала.

Изменение канала или выбор опорного источника

Биты MUXn и REFS1:0 в регистре ADMUX поддерживают одноступенчатую буферизацию через временный регистр. Этим гарантируется, что новые настройки канала преобразования и опорного источника вступят в силу в безопасный момент для преобразования. До начала преобразования любые изменения канала и опорного источника вступаю в силу сразу после их модификации. Как только начинается процесс преобразования доступ к изменению канала и опорного источника блокируется, чем гарантируется достаточность времени на преобразование для АЦП. Непрерывность модификации возвращается на последнем такте АЦП перед завершением преобразования (перед установкой флага ADIF в регистре ADCSRA). Обратите внимание, что преобразование начинается следующим нарастающим фронтом тактового сигнала АЦП после записи ADSC. Таким образом, пользователю не рекомендуется записывать новое значение канала или опорного источника в ADMUX до 1-го такта синхронизации АЦП после записи ADSC.

Особые меры необходимо предпринять при изменении дифференциального канала. Как только осуществлен выбор дифференциального канала усилительному каскаду требуется 125 мкс для стабилизации нового значения. Следовательно, в течение первых после переключения дифференциального канала 125 мкс не должно стартовать преобразование. Если же в этот период преобразования все-таки выполнялись, то их результат необходимо игнорировать.

Такую же задержку на установление необходимо ввести при первом дифференциальном преобразовании после изменения опорного источника АЦП (за счет изменения бит REFS1:0 в ADMUX).

Если разрешена работа интерфейса JTAG, то функции каналов АЦП на выводах порта F 7…4 отменяется. См. табл. 42 и “Альтернативные функции порта F”.

Входные каналы АЦП

При переключении входного канала необходимо учесть некоторые рекомендации, которые исключат некорректность переключения.

В режиме одиночного преобразования переключение канала необходимо выполнять перед началом преобразования. Переключение канала может произойти только в течение одного такта синхронизации АЦП после записи лог. 1 в ADSC. Однако самым простым методом является ожидание завершения преобразования перед выбором нового канала.

В режиме автоматического перезапуска канал необходимо выбирать перед началом первого преобразования. Переключение канала происходит аналогично - в течение одного такта синхронизации АЦП после записи лог. 1 в ADSC. Но самым простым методом является ожидание завершения перового преобразования, а затем переключение канала. Поскольку следующее преобразование уже запущено автоматически, то следующий результат будет соответствовать предыдущему каналу. Последующие преобразования отражают результат для нового канала.

При переключении на дифференциальный канал первое преобразование будет характеризоваться плохой точностью из-за переходного процесса в схеме автоматической регулировки смещения. Следовательно, первый результат такого преобразования рекомендуется игнорировать.

Источник опорного напряжения АЦП

Источник опорного напряжения (ИОН) для АЦП (VИОН) определяет диапазон преобразования АЦП. Если уровень однополярного сигнала свыше VИОН, то результатом преобразования будет 0x3FF. В качестве VИОН могут выступать AVCC, внутренний ИОН 2,56В или внешний ИОН, подключенный к выв. AREF. AVCC подключается к АЦП через пассивный ключ. Внутреннее опорное напряжение 2,56В генерируется внутренним эталонным источником VBG, буферизованного внутренним усилителем. В любом случае внешний вывод AREF связан непосредственно с АЦП и, поэтому, можно снизить влияние шумов на опорный источник за счет подключения конденсатора между выводом AREF и общим. Напряжение VИОН также может быть измерено на выводе AREF высокоомным вольтметром. Обратите внимание, что VИОН является высокоомным источником и, поэтому, внешне к нему может быть подключена только емкостная нагрузка.

Если пользователь использует внешний опорный источник, подключенный к выв. AREF, то не допускается использование другой опции опорного источника, т.к. это приведет к шунтированию внешнего опорного напряжения. Если к выв. AREF не приложено напряжение, то пользователь может выбрать AVCC и 2.56В качестве опорного источника. Результат первого преобразования после переключения опорного источника может характеризоваться плохой точностью и пользователю рекомендуется его игнорировать.

Если используются дифференциальные каналы, то выбранный опорный источник должен быть меньше уровня AVCC, что показано в табл. 136.

Подавитель шумов АЦП

АЦП характеризуется возможностью подавления шумов, которые вызваны работой ядра ЦПУ и периферийных устройств ввода-вывода. Подавитель шумов может быть использован в режиме снижения шумов АЦП и в режиме холостого хода. При использовании данной функции необходимо придерживаться следующей процедуры:

  1. Убедитесь, что работа АЦП разрешена и он не выполняет преобразования. Выберите режим одиночного преобразования и разрешите прерывание по завершении преобразования.
  2. Введите режим уменьшения шумов АЦП (или режим холостого хода). АЦП запустит преобразование как только остановится ЦПУ.
  3. Если до завершения преобразования не возникает других прерываний, то АЦП вызовет прерывание ЦПУ и программа перейдет на вектор обработки прерывания по завершении преобразования АЦП. Если до завершения преобразования другое прерывание пробуждает микроконтроллер, то это прерывание обрабатывается, а по завершении преобразования генерируется соответствующий запрос на прерывание. АЦП остается в активном режиме пока не будет выполнена очередная команда sleep.

Обратите внимание, что АЦП не отключается автоматически при переводе во все режимы сна, кроме режима холостого хода и снижения шумов АЦП. Поэтому, пользователь должен предусмотреть запись лог. 0 в бит ADEN перед переводом в такие режимы сна во избежание чрезмерного энергопотребления. Если работа АЦП была разрешена в таких режимах сна и пользователь желает выполнить дифференциальное преобразование, то после пробуждения необходимо включить, а затем выключить АЦП для инициации расширенного преобразования, чем будет гарантировано получение действительного результата.

Схема аналогового входа для однополярных каналов представлена на рисунке 113. Независимо от того, какой канал подключен к АЦП, аналоговый сигнал, подключенный к выв. ADCn, нагружается емкостью вывода и входным сопротивлением утечки. После подключения канала к АЦП аналоговый сигнал будет связан с конденсатором выборки-хранения через последовательный резистор, сопротивление которого эквивалентно всей входной цепи.

АЦП оптимизирован под аналоговые сигналы с выходным сопротивлением не более 10 кОм. Если используется такой источник сигнала, то время выборки незначительно. Если же используется источник с более высоким входным сопротивлением, то время выборки будет определяться временем, которое требуется для зарядки конденсатора выборки-хранения источником аналогового сигнала. Рекомендуется использовать источники только с малым выходным сопротивлением и медленно изменяющимися сигналами, т.к. в этом случае будет достаточно быстрым заряд конденсатора выборки-хранения.

По отношению к каналам с дифференциальным усилением рекомендуется использовать сигналы с внутренним сопротивлением до нескольких сотен кОм. Следует предусмотреть, чтобы в предварительных каскадах формирования аналогового сигнала ко входу АЦП не вносились частоты выше fАЦП/2, в противном случае результат преобразования может быть некорректным. Если вероятность проникновения высоких частот существует, то рекомендуется перед АЦП установить фильтр низких частот.


Рисунок 113 – Схема аналогового входа

Работа цифровых узлов внутри и снаружи микроконтроллера связана с генерацией электромагнитных излучений, которые могут негативно сказаться на точность измерения аналогового сигнала. Если точность преобразования является критическим параметром, то уровень шумов можно снизить, придерживаясь следующих рекомендаций:

  1. Выполняйте путь аналоговых сигналов как можно более коротким. Следите, чтобы аналоговые сигналы проходили над плоскостью (слоем) с аналоговой землей (экраном) и далеко от проводников, передающих высокочастотные цифровые сигналы.
  2. Вывод AVCC необходимо связать с цифровым питанием VCC через LC-цепь в соответствии с рис. 114.
  3. Используйте функцию подавления шумов АЦП, внесенных работой ядра ЦПУ.
  4. Если какой-либо из выводов АЦП используется как цифровой выход, то чрезвычайно важно не допустить переключение состояния этого выхода в процессе преобразования.


Рисунок 114 – Подключение питания АЦП

Методы компенсации смещения

Усилительный каскад имеет встроенную схему компенсации смещения, которая стремится максимально приблизить к нулю смещение дифференциального измерения. Оставшееся смещение можно измерить, если в качестве дифференциальных входов АЦП выбрать один и тот же вывод микроконтроллера. Измеренное таким образом остаточное смещение можно программно вычесть из результата преобразования. Использование программного алгоритма коррекции смещения позволяет уменьшить смещение ниже одного мл. разр.

Определения погрешностей аналогово-цифрового преобразования

n-разрядный однополярный АЦП преобразовывает напряжение линейно между GND и VИОН с количеством шагами 2n (мл. разрядов). Минимальный код = 0, максимальный = 2n-1. Основные погрешности преобразования являются отклонением реальной функции преобразования от идеальной. К ним относятся:

Смещение – отклонение первого перехода (с 0x000 на 0x001) по сравнению с идеальным переходом (т.е. при 0.5 мл. разр.). Идеальное значение: 0 мл. разр.


Рисунок 115 – Погрешность смещения

После корректировки смещения погрешность усиления представляет собой отклонение последнего перехода (с 0x3FE на 0x3FF) от идеального перехода (т.е. отклонение при максимальном значении минус 1,5 мл. разр.). Идеальное значение: 0 мл. разр.


Рисунок 116 – Погрешность усиления

Интегральная нелинейность (ИНЛ) . После корректировки смещения и погрешности усиления ИНЛ представляет собой максимальное отклонение реальной функции преобразования от идеальной для любого кода. Идеальное значение ИНЛ = 0 мл. разр.


Рисунок 117 - Интегральная нелинейность (ИНЛ)

Дифференциальная нелинейность (ДНЛ) . Максимальное отклонение между шириной фактического кода (интервал между двумя смежными переходами) от ширины идеального кода (1 мл. разр.). Идеальное значение: 0 мл. разр.


Рисунок 118 - Дифференциальная нелинейность (ДНЛ)

Погрешность квантования . Возникает из-за преобразования входного напряжения в конечное число кодов. Погрешность квантования- интервал входного напряжения протяженностью 1 мл. разр. (шаг квантования по напряжению), который характеризуется одним и тем же кодом. Всегда равен ±0.5 мл. разр.

Абсолютная погрешность . Максимальное отклонение реальной (без подстройки) функции преобразования от реальной при любом коде. Является результатом действия нескольких эффектов: смещение, погрешность усиления, дифференциальная погрешность, нелинейность и погрешность квантования. Идеальное значение: ±0.5 мл. разр.

Результат преобразования АЦП

По завершении преобразования (ADIF = 1) результат может быть считан из пары регистров результата преобразования АЦП (ADCL, ADCH).

Для однополярного преобразования:

где V вх – уровень напряжения на подключенном к АЦП входу;

Vион –напряжение выбранного источника опорного напряжения (см. табл. 97 и табл. 98). Код 0x000 соответствует уровню аналоговой земли, а 0x3FF - уровню напряжения ИОН минус 1 шаг квантования по напряжению. При использовании дифференциального канала

V pos - напряжение на неинвертирующем (инвертирующем) входе; V neg - коэффициент усиления; V ref - напряжение выбранного ИОН.

Результат представляется в коде двоичного дополнения, начиная с 0x200 (-512d) до 0x1FF (+511d). Обратите внимание, что при необходимости быстро определить полярность результата достаточно опросить старший бит результата преобразования (ADC9 в ADCH). Если данный бит равен лог. 1, то результат отрицательный, если же лог. 0, то положительный. На рисунке 119 представлена функция преобразования АЦП в дифференциальном режиме.

В таблице 96 представлены результирующие выходные коды для дифференциальной пары каналов (ADCn - ADCm) с коэффициентом усиления Ку и опорным напряжением VИОН.


Рисунок 119 – Функция преобразования АЦП при измерении дифференциального сигнала

Таблица 96 – Связь между входным напряжением и выходными кодами

V АЦПn Считываемый код Соответствующее десятичное значение
V АЦПm + V ИОН /Ky 0x1FF 511
V АЦПm + 0.999 V ИОН / Ky 0x1FF 511
V АЦПn + 0.998 V ИОН / Ky 0x1FE 510
... ...
V АЦПm + 0.001 V ИОН / Ky 0x001 1
V АЦПm 0x000 0
V АЦПm - 0.001 V ИОН / Ky 0x3FF -1
... ...
V АЦПm - 0.999 V ИОН / Ky 0x201 -511
V АЦПm – V ИОН / Ky 0x200 -512

Пример: Пусть ADMUX = 0xED (пара входов ADC3 - ADC2, Ку=1, Vион=2.56В, результат с левосторонним выравниванием), напряжение на входе ADC3 = 300 мВ, а на входе ADC2 = 500 мВ, тогда:

КодАЦП = 512 * 10 * (300 - 500) / 2560 = -400 = 0x270

С учетом выбранного формата размещения результата (левосторонний) ADCL = 0x00, а ADCH = 0x9C. Если же выбран правосторонний формат (ADLAR=0), то ADCL = 0x70, ADCH = 0x02.

Регистр управления мультиплексором АЦП– ADMUX

Разряд 7 6 5 4 3 2 1 0
REFS1 REFS0 ADLAR MUX4 MUX3 MUX2 MUX1 MUX0 ADMUX
Чтение/запись Чт./Зп. Чт./Зп. Чт./Зп. Чт./Зп. Чт./Зп. Чт./Зп. Чт./Зп. Чт./Зп.
Исх. значение 0 0 0 0 0 0 0 0

Разряд 7:6 – REFS1:0: Биты выбора источника опорного напряжения

Данные биты определяют какое напряжение будет использоваться в качестве опорного для АЦП (см. табл. 97). Если изменить значения данных бит в процессе преобразования, то новые установки вступят в силу только по завершении текущего преобразования (т.е. когда установится бит ADIF в регистре ADCSRA). Внутренний ИОН можно не использовать, если к выводу AREF подключен внешний опорный источник.

Таблица 97 – Выбор опорного источника АЦП

Разряд 5 – ADLAR: Бит управления представлением результата преобразования

Бит ADLAR влияет на представление результата преобразования в паре регистров результата преобразования АЦП. Если ADLAR = 1, то результат преобразования будет иметь левосторонний формат, в противном случае - правосторонний. Действие бита ADLAR вступает в силу сразу после изменения, независимо от выполняющегося параллельно преобразования. Полное описание действия данного бита представлено в “Регистры данных АЦП – ADCL и ADCH”.

Разряд 4:0 – MUX4:0: Биты выбора аналогового канала и коэффициента усиления

Данные биты определяют какие из имеющихся аналоговых входов подключаются к АЦП. Кроме того, с их помощью можно выбрать коэффициент усиления для дифференциальных каналов (см. табл. 98). Если значения бит изменить в процессе преобразования, то механизм их действия вступит в силу только после завершения текущего преобразования (после установки бита ADIF в регистре ADCSRA).

Таблица 98 – Выбор входного канала и коэффициента усиления

MUX4..0 Однополярный вход Неинвертирующий дифференциальный вход Инвертирующий дифференциальный вход Коэффициент усиления, Ку
00000 ADC0 Нет
00001 ADC1
00010 ADC2
00011 ADC3
00100 ADC4
00101 ADC5
00110 ADC6
00111 ADC7
01000 Нет ADC0 ADC0 10
01001 ADC1 ADC0 10
01010 ADC0 ADC0 200
01011 ADC1 ADC0 200
01100 ADC2 ADC2 10
01101 ADC3 ADC2 10
01110 ADC2 ADC2 200
01111 ADC3 ADC2 200
10000 ADC0 ADC1 1
10001 ADC1 ADC1 1
10010 ADC2 ADC1 1
10011 ADC3 ADC1 1
10100 ADC4 ADC1 1
10101 ADC5 ADC1 1
10110 ADC6 ADC1 1
10111 ADC7 ADC1 1
11000 ADC0 ADC2 1
11001 ADC1 ADC2 1
11010 ADC2 ADC2 1
11011 ADC3 ADC2 1
11100 ADC4 ADC2 1
11101 ADC5ADC21
Нет111110В(GND)
11110 1.23В (VBG)

Регистр А управления и статуса АЦП – ADCSRA

Разряд 7 6 5 4 3 2 1 0
ADEN ADSC ADFR ADIF ADIE ADPS2 ADPS1 ADPS0 ADCSRA
Чтение/запись Чт./Зп. Чт./Зп. Чт./Зп. Чт./Зп. Чт./Зп. Чт./Зп. Чт./Зп. Чт./Зп.
Исх. значение 0 0 0 0 0 0 0 0

Разряд 7 – ADEN: Разрешение работы АЦП

Запись в данный бит лог. 1 разрешает работу АЦП. Если в данный бит записать лог. 0, то АЦП отключается, даже если он находился в процессе преобразования.

Разряд 6 – ADSC: Запуск преобразования АЦП

В режиме одиночного преобразования установка данного бита инициирует старт каждого преобразования. В режиме автоматического перезапуска установкой этого бита инициируется только первое преобразование, а все остальные выполняются автоматически. Первое преобразование после разрешения работы АЦП, инициированное битом ADSC, выполняется по расширенному алгоритму и длится 25 тактов синхронизации АЦП, вместо обычных 13 тактов. Это связано с необходимостью инициализации АЦП.

В процессе преобразования при опросе бита ADSC возвращается лог. 1, а по завершении преобразования – лог. 0. Запись лог. 0 в данный бит не предусмотрено и не оказывает никакого действия.

Разряд 5 – ADFR: Выбор режима автоматического перезапуска АЦП

Если в данный бит записать лог. 1, то АЦП перейдет в режим автоматического перезапуска. В этом режиме АЦП автоматически выполняет преобразования и модифицирует регистры результата преобразования через фиксированные промежутки времени. Запись лог. 0 в этот бит прекращает работу в данном режиме.

Разряд 4 – ADIF: Флаг прерывания АЦП

Данный флаг устанавливается после завершения преобразования АЦП и обновления регистров данных. Если установлены биты ADIE и I (регистр SREG), то происходит прерывание по завершении преобразования. Флаг ADIF сбрасывается аппаратно при переходе на соответствующий вектор прерывания. Альтернативно флаг ADIF сбрасывается путем записи лог. 1 в него. Обратите внимание, что при выполнении команды "чтение-модификация-запись" с регистром ADCSRA ожидаемое прерывание может быть отключено. Данное также распространяется на использование инструкций SBI и CBI.

Разряд 3 – ADIE: Разрешение прерывания АЦП

После записи лог. 1 в этот бит, при условии, что установлен бит I в регистре SREG, разрешается прерывание по завершении преобразования АЦП.

Разряды 2:0 – ADPS2:0: Биты управления предделителем АЦП

Данные биты определяют на какое значение тактовая частота ЦПУ будет отличаться от частоты входной синхронизации АЦП.

Таблица 99 – Управление предделителем АЦП

Регистры данных АЦП – ADCL и ADCH

ADLAR = 0:

Разряд 15 14 13 12 11 10 9 8
- - - - - - ADC9 ADC8 ADCH
ADC7 ADC6 ADC5 ADC4 ADC3 ADC2 ADC1 ADC0 ADCL
7 6 5 4 3 2 1 0
Чтение/запись Чт. Чт. Чт. Чт. Чт. Чт. Чт. Чт.
Чт. Чт. Чт. Чт. Чт. Чт. Чт. Чт.
Исх. значение 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

ADLAR = 1:

Разряд 15 14 13 12 11 10 9 8
ADC9 ADC8 ADC7 ADC6 ADC5 ADC4 ADC3 ADC2 ADCH
ADC1 ADC0 - - - - - - ADCL
7 6 5 4 3 2 1 0
Чтение/запись Чт. Чт. Чт. Чт. Чт. Чт. Чт. Чт.
Чт. Чт. Чт. Чт. Чт. Чт. Чт. Чт.
Исх. значение 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

По завершении преобразования результат помещается в этих двух регистрах. При использовании дифференциального режима преобразования результат представляется в коде двоичного дополнения.

Если выполнено чтение ADCL, то доступ к этим регистрам для АЦП будет заблокирован (т.е. АЦП не сможет в дальнейшем модифицировать результат преобразования), пока не будет считан регистр ADCH.

Левосторонний формат представления результата удобно использовать, если достаточно 8 разрядов. В этом случае 8-разрядный результат хранится в регистре ADCH и, следовательно, чтение регистра ADCL можно не выполнять. При правостороннем формате необходимо сначала считать ADCL, а затем ADCH.

ADC9:0: Результат преобразования АЦП

Данные биты представляют результат преобразования.


Часто бывает потребность замерять напряжения. Для этих целей в микроконтроллере есть АЦП (аналого-цифровой преобразователь). АЦП - это устройство, которое преобразует аналоговый сигнал в его цифровое представление. На вход АЦП подается аналоговый сигнал, а на выходе мы получаем эквивалентный цифровой сигнал.

Основные характеристики АЦП

  • Частота преобразования - это сколько раз в секунду АЦП сможет измерить напряжение
  • Разрядность - количество дискретных значений напряжения, на который делится весь рабочий диапазон входных напряжений. АЦП в AVR десяти разрядные. То есть, максимальное напряжение на входе АЦП будет переводиться в 2 10 =1024
  • Диапазон входных напряжений - это минимальное и максимальное напряжение, которое можно подавать на входы АЦП. Для avr это диапазон от 0 до напряжения питания микроконтроллера
Для работы АЦП необходим источник опорного напряжения (ИОН). Это эталон, по отношению к которому он измеряет напряжение на входе. В AVR в качестве источника опорного напряжения может выступать напряжения питания МК, источник опорного напряжения, подключенный к ножке ARef и внутренний ИОН на 2,56 в. ИОН должен быть как можно стабильней, от этого зависит точность измерений. Чтобы пощупать все это, давайте сделаем простой вольтметр на 5в. Запускаем CVAVR, на вопрос запустить CodeWizardAVR кликаем "да" и переходим во вкладку ADC

Нам для нашего вольтметра нужно установить источник опорного напряжения на ножке AVCC (ножка питание АЦП ), частота преобразования 500 килогерц

Мы наши измерения с АЦП будем выводить на lcd-дисплей, для его инициализации переходим во вкладку LCD и устанавливаем все, как на скриншоте

Теперь все настройки выполнены, кликаем file->Generate. save and exit . Дописываем код, который сгенерировал CWAVR, и убираем в нём инициализации периферии МК, которые мы не используем, получается следующий код:

#include #include #include // Alphanumeric LCD Module functions #asm .equ __lcd_port=0x12 ;PORTD #endasm #include #define ADC_VREF_TYPE 0x40 // Read the AD conversion result unsigned int read_adc(unsigned char adc_input) { ADMUX=adc_input | (ADC_VREF_TYPE & 0xff); // Delay needed for the stabilization of the ADC input voltage delay_us(10); // Start the AD conversion ADCSRA|=0x40; // Wait for the AD conversion to complete while ((ADCSRA & 0x10)==0); ADCSRA|=0x10; return ADCW; } void main(void) { char lcd_buffer; unsigned int u; // ADC initialization // ADC Clock frequency: 500,000 kHz // ADC Voltage Reference: AVCC pin ADMUX=ADC_VREF_TYPE & 0xff; ADCSRA=0x81; // LCD module initialization lcd_init(16); while (1) { /*так как АЦП у нас 10-битный, то максимальное число, которое вернет функция, read_adc() будет равно 1024, это число будет эквивалентом напряжения на входе adc0. Например, если read_adc() вернул 512, то это значит, что на вход adc0 мы подали половину опорного напряжения Чтобы вычислить реальное напряжение, нам нужно составить пропорцию опорное напряжение - 1024 искомое напряжение - adc У нас опорное напряжение = 5 Искомое напряжение = 5 * adc/1024, или Искомое напряжение = 0,005*adc для простоты переведём вольты в миливольты, домножив на 1000 Искомое напряжение = 0,005*adc*1000 */ u=read_adc(0) * 5;//вызываем функцию для измерения напряжения и передаем ей номер ножки, на которой нужно измерить напряжение lcd_clear(); //чистим дисплей перед выводом lcd_gotoxy(0,0); // перевод курсор в положение x=0 y=0 sprintf(lcd_buffer,"U = %i mv",u); // формируем строку для вывода lcd_puts(lcd_buffer); //выводим строку на дисплей delay_us(500); //делаем задержку 500 мл }; }

Программа готова, дело за схемой

Схема очень простая, на ней мы видим микроконтроллер atmega8 и lcd-дисплей знакосинтезирующий 16х2 (пример работы с lcd описан ). Наш простой вольтметр измеряет напряжения до 5 в. Как измерять напряжения больше 5 в Схема выполнена в Proteus, все необходимые файлы для этого урока находятся в архиве