Антенны

Индикатор наведения спутниковой антенны

Для того чтобы контролировать сигнал, принимаемый антенной спутниковой системы на месте ее установки, очень пригодится описываемый ниже прибор. Он позволит точно ориентировать антенну на спутник и получить хорошее качество приема.



При монтаже оборудования для приема спутникового телевидения или Интернета одной из проблем можно назвать точную ориентацию антенны на спутник. Легко решить ее можно, используя индикатор, внешний вид которого показан на рис. 1. Он снабжен микроамперметром, отклонение стрелки которого зависит от уровня принимаемого сигнала. Индикатор включают между кабелем снижения и высокочастотным облучателем-конвертером (так называемым блоком LNB) спутниковой системы.



Рис. 2

Схема устройства изображена на рис. 2. Оно содержит два одинаковых усилителя ВЧ на микросхемах DA1, DA2, детектор на транзисторе VT1 и стабилизатор напряжения на микросхеме DA3. Каждый из усилителей потребляет ток 8... 10 мА, имеет коэффициент усиления 22...25 дБ до частоты 2 ГГц и верхнюю граничную частоту 2,5 ГГц по уровню -ЗдБ. Общий коэффициент усиления в интервале частот 0,7...2,2 ГГц достигает 45 дБ.

Для подавления сигналов частотой менее 700 МГц на входе установлен ФВЧ C2L2C3. Чувствительность индикатора регулируют переменным резистором R10. Переменным резистором R4 устанавливают режим по постоянному току транзистора VT1, который служит амплитудным детектором. Питание на индикатор поступает по кабелю снижения от ресивера через ФНЧ L1C1 и защитный диод VD1.

После подключения кабеля снижения и конвертера к гнездам XW1, XW2 и включения устройства переменным резистором R4 устанавливают такой режим работы транзистора VT1, чтобы микроамперметр РА1 показал ток, близкий к нулю. Выходной сигнал конвертера (в том числе и шумовой) проходит через ФВЧ, первый, затем второй усилители ВЧ и поступает на базу транзистора VT1.

При увеличении амплитуды сигнала ВЧ коллекторный ток через транзистор VT1 увеличивается, а напряжение на нем уменьшается. В результате через микроамперметр РА1 будет протекать ток. Чем больше уровень сигнала, тем сильнее отклоняется стрелка. При ее малом или большом отклонении чувствительность прибора увеличивают или уменьшают переменным резистором R10 соответственно.

При медленном изменении пространственной ориентации антенны и приближении к точному направлению на спутник стрелка индикатора отклоняется больше. По максимуму ее отклонения ориентируют антенну точно на спутник. При этом сигнал поступает на ресивер и можно наблюдать результаты настройки на экране телевизора или монитора.

В устройстве, кроме указанных на схеме, можно использовать другие малогабаритные детали для поверхностного монтажа: микросхему INA03170 (DA1, DA2), любой интегральный стабилизатор напряжения в корпусе SOT-89 с напряжением стабилизации 8...9 В (DA3), транзисторы - АТ41411, АТ41435, АТ41486 (VT1), постоянные резисторы РН1-12 типоразмера 1206, переменные серий СП4, СПО, конденсаторы К10-17В или аналогичные импортные.

Катушки L1, L2 намотаны проводом ПЭВ-2 0,2 на оправке диаметром 2 мм. Катушка L1 содержит 10 витков, намотка - виток к витку, катушка L2 - 3 витка с шагом 1 мм. Разъемы - типа F. Выключатель питания - любой малогабаритный. Микроамперметр - с током полного отклонения 1ОО...2ООмкА и сопротивлением от нескольких сотен ом до нескольких единиц килоом.


Рис. 3

Большинство деталей размещено на печатной плате из двусторонне фольгированного стеклотекстолита, эскиз которой представлен на рис. 3. Металлизация обеих сторон соединена между собой припаянной по краю платы фольгой и через отверстия (отрезками луженого провода). Плату по краям припаивают к металлической крышке корпуса, к которой также припаивают и разъемы, как видно на рис. 4. Переменные резисторы, микроамперметр и выключатель размещают на корпусе (желательно также металлическом) устройства.


Потребляемый индикатором ток - примерно 30 мА. Для питания индикатора, а также конвертера можно использовать автономный источник, например, батарею гальванических элементов или аккумуляторов напряжением 12 В. В этом случае на корпусе индикатора следует установить дополнительные гнезда для подключения батареи, соединив их с выводами конденсатора С1.

  • Юрий / 02.07.2010 - 08:00
    спасибо за схемку
  • Настроение сейчас -

    Индикатор напряженности поля может потребоваться при налаживании радиостанции или передатчика, если нужно определить уровень радиосмога и найти его источник или при поиске и обнаружении скрытых передатчиков ("шпионских радиомикрофонов"). Можно обойтись без осциллографа, даже можно обойтись без тестера, но без индикатора ВЧ поля, никогда! При кажущейся простоте - это прибор, который обладает исключительной надежностью и работает безотказно в любых условиях. Самое прекрасное, что настраивать его практически не надо (если выбраны те компоненты, которые указаны в схеме) и ему не требуется никакого внешнего питания.


    схему можно сделать еще проще - и все равно будет прекрасно работать...

    Как работает схема?
    Сигнал с передатчика с антенны W1, через конденсатор С1 поступает на диодный детектор на VD1 и VD2, построенный по схеме удвоения напряжения. В результате на выходе детектора (правый конец диода VD2) формируется постоянное напряжение, пропорциональное интенсивности сигнала, поступающего на антенну W1. Конденсатор С2 является накопительным (если бы мы говорили о блоке питания, про него сказали «сглаживает пульсации»).

    Далее продетектированное напряжение поступает либо на индикатор на светодиоде VD3, либо на амперметр, либо на вольтметр. Перемычка J1 нужна для того, чтобы было возможно отключать светодиод VD3 во время проведения измерений по приборам (он, естественно вносит сильные искажения, причем нелинейные), но в большинстве случае его можно и не отключать (если измерения носят относительный характер, а не абсолютный)
    Конструкция.
    От конструкции зависит очень много, прежде всего необходимо решить как вы будете использовать данный индикатор: как пробник, или как измеритель интенсивности электромагнитного поля. Если как пробник, то можно ограничится только установкой светодиода VD3. Тогда при поднесении данного индикатора к антенне передатчика он будет гореть, чем ближе к антенне, тем сильнее. Такой вариант я очень рекомендую сделать все, чтобы иметь в кармане, для «полевых испытаний аппаратуры» - элементарно просто поднести его к антенне передатчика или радиостанции, чтобы убедиться, что ВЧ часть работает.
    Если необходимо измерять интенсивность (т.е. давать численные значения – это необходимо будет при настройке ВЧ-модуля), необходимо будет ставить либо вольметр, либо амперметр. На фотографиях ниже представлен гибридный вариант.


    Что касается деталей, то особых требований нет. Конденсаторы самые обычные, можно SMD, можно обычные в выводных корпусах. Но, хочу предупредить схема очень чувствительна к типам диодов. С некоторыми может вообще не работать. На схеме представлены те типы диодов, с которыми она гарантированно работает. Причем лучший результат дали старые германиевые диоды Д311. При их использовании схема работает до 1 гГц (проверено!), во всяком случае какое-то напряжение на выходе разглядеть можно. Если сразу не заработало – ОБЯЗАТЕЛЬНО попробуйте другую пару диодов (как одного типа, так и разных), т.к. часто результат работы меняется в зависимости от экземпляра.
    Приборы амперметр на ток до 100 мкА или вольтметр до 1 В, можно до 2-3 В.

    Налаживание.
    Налаживание, в принципе не требуется, все должно работать. Цель налаживания проверка работоспособности – увидеть отклонение стрелки прибора, или зажигания светодиода. Но, все-таки, я бы рекомендовал попробовать даже нормально работающий индикатор в разными типам диодов, имеющихся в наличии – может существенно увеличиться чувствительность. В любом случае надо добиваться максимального отклонения стрелки прибора
    Если у вас еще не собран передатчик или у вас просто нет доступа к чему-то работающему и дающему хорошее ВЧ-поле (например, ВЧ генератора, типа Г4-116) то, чтобы проверить работу пробника можно съездить в Останкино (метро «ВДНХ») или на Шаболовскую (метро «Шаболовская»). В Останкино этот индикатор работает даже в троллейбусе, когда проезжаешь мимо башни. На Шаболовской, надо подойти почти вплотную к самой башне. Иногда источником мощных ВЧ полей служит бытовая аппаратура, если антенну пробника расположить около сетевого провода мощной нагрузки (например, утюга или чайника), то путем периодического включения-выключения можно тоже добиться отклонения стрелки прибора. Если у кого-то есть радиостанция, то для проверки работы она вполне подойдет тоже (надо его поднести к антенне, пока радиостанция находится в режиме передачи). В качестве другого варианта можно – можно использовать сигнал к кварцевого генератора от какой-либо бытовой аппаратуры (например, видеоигры, компьютера, видеомагнитофона) – для этого надо «внутри этой аппаратуры» найти кварцевый резонатор на частоту от 0.5 мГц до 70 мГц и просто прикоснуться антенной W1 к одному из его выводов (либо поднести к одному из выводов).
    Столь подробное описание проверки работы пробника носит только одну цель – до постройки ВЧ модуля передатчика надо быть на 100% уверенным, что ВЧ индикатор работоспособен! ЭТО ОЧЕНЬ ВАЖНО! Пока не убедитесь, что ВЧ индикатор работает приниматься за постройку передатчика бесполезно.
    Так это может выглядеть (видно, что горит VD3, естественно J1 подключена и подключен вольтметр на диапазон 2.5 В):


    Перспективы и использование.
    Для налаживания передатчика вместо жесткой антенны можно использовать гибкий, многожильный. При этом можно либо просто припаивать его к измеряемым точкам схемы, либо если другим проводом массу индикатора (точку соединения VD1, С2, VD3) соединить с массой налаживаемой ВЧ системы просто подносить этот гибкий антенный провод к тестовой точке или контуру (не припаивая). Если на контуре нет экрана – иногда бывает достаточно просто поднести антенный провод индикатора к катушке контура. В данном случае все зависит от интенсивности ВЧ напряжения в измеряемой системе.
    Вместо амперметра или вольтметра можно попробовать подключить наушники – тогда можно будет услышать сигнал передатчика, так например, рекомендуется делать в книге Борисова «Юный радиолюбитель».
    Этот же пробник (если подключен вольтметр), зная частоту на которой работает ВЧ система может помочь довольно точно измерить мощность сигнала. При этом надо снять показания прибора на минимально возможном расстоянии от антенны, затем чуть дальше (измерив это расстояние линейкой), затем подставив в формулу (ее надо поискать в справочниках - на память я не помню) получить значение в dB. Естественно, то желательно данную операцию провести, например, с радиостанцией мощность которой известна, и только потом измерять мощность неизвестно источника. Конечно надо учитывать, что частоты эталонной радиостанции и вашего источника одни и те же, т.к. хоть в нашем случае в описанном пробнике нет входного контура он все же обладает частотоизбирающими свойствами за счет конструкции (длина антенны, емкости монтажа и т.д.)

    При налаживании радиопередающих устройств очень важно правильно согласовать антенну с оконечным каскадом, чтобы излучение, а значит и дальность связи, были максимальными. Особенно это важно для маломощных передатчиков, поскольку здесь настройка антенны является решающим фактором дальности. Предлагаемый широкополосный индикатор поля прост в повторении, собран на доступной элементной базе и по сути «вечный», поскольку не имеет источника питания.

    Во время работы с индикатором его необходимо располагать не ближе 2λ, где λ – длина волны излучаемых передатчиком колебаний. Чувствительность прибора регулируют переменным резистором R1. В качестве антенны WA1 служит отрезок любого провода длиной 200 мм.

      http://сайт/wp-content/plugins/svensoft-social-share-buttons/images/placeholder.png

      При налаживании радиопередающих устройств очень важно правильно согласовать антенну с оконечным каскадом, чтобы излучение, а значит и дальность связи, были максимальными. Особенно это важно для маломощных передатчиков, поскольку здесь настройка антенны является решающим фактором дальности. Предлагаемый широкополосный индикатор поля прост в повторении, собран на доступной элементной базе и по сути «вечный», поскольку не имеет источника […]

    Самостоятельно сконструированная антенна только тогда даст хорошие результаты, когда она точно настроена и ее параметры измерены с помощью соответствующих измерительных приборов.

    Настройка антенны в основном заключается в настройке антенны в соответствующем диапазоне частот, в согласовании выходного каскада передатчика с линией передачи и согласовании линии передачи с антенной и, наконец, в настройке антенны на максимальное излучение и, если имеется возможность, в снятии диаграммы направленности антенны.

    Для антенн, питаемых по настроенным линиям передачи (при условии, что в размерах линии передачи не допущено грубых ошибок), измерение резонанса антенны можно не проводить. При этом устройство связи, обычно помещаемое в начале линии передачи, позволяет настроить линию передачи и антенну на рабочую частоту передатчика, причем настройка должна проводиться до получения максимального значения тока в антенне.

    Для измерения абсолютного значения тока в антенне можно использовать термопару в сочетании с чувствительным прибором магнитоэлектрической системы или тепловой прибор. Однако такие измерители тока довольно дороги и, кроме того, очень чувствительны к перегрузкам.

    Обычно при настройке антенны радиолюбителю нет необходимости знать точное значение тока, а вполне достаточно при настройке антенны иметь средство для индикации его максимума.

    В простейшем случае между выходом передатчика и линией передачи включается лампочка накаливания (например, лампочка подсвета шкалы) и максимум тока в антенне определяется по ее максимальному свечению (рис. 14-1, а и б). Параллельно лампочке накаливания включается шунтирующее сопротивление, предотвращающее ее перегорание.

    На рис. 14-2 изображен простой и надежный прибор для индикации максимума тока в антенне, который имеет то дополнительное преимуществу что он почти не потребляет никакой мощности и при этом служит достаточно точным индикатором тока в антенне.

    Показанные на рис. 14-2 индикаторы антенного тока различаются только видом связи с линией передачи. В качестве выпрямителя может быть применен любой германиевый диод.

    Иногда возникает необходимость иметь индикатор напряжения высокой частоты. Для этого используется неоновая лампа, связанная с линией передачи через емкость, как показано на рис. 14-3.

    Более чувствительная схема для измерения напряжения высокой частоты с германиевым диодом и измерительным прибором магнитоэлектрической системы изображена на рис. 14-4.

    Добавочное сопротивление R ш зависит от внутреннего сопротивления измерительного прибора и от желаемой чувствительности схемы. Конденсаторы, применяемые в схеме, керамические. Вообще применение диодов в антенной цепи нежелательно, так как при выпрямлении прилагаемого к нему напряжения высокой частоты из-за нелинейной характеристики возникают высшие гармоники, которые могут попасть в антенну и таким образом вызвать нежелательные помехи телевидению.

    Антенны с настроенными линиями передачи могут быть настроены на максимум излучения с помощью устройства настройки линии передачи (например, П-образного фильтра) по максимуму тока в антенне. При этом само значение максимума тока не определяет величины излучаемой антенной мощности: при согласовании по току максимум может иметь очень большую абсолютную величину, а при связи по напряжению может быть очень небольшим, но излучаемая мощность в обоих случаях одинакова.

    В случае, если антенна питается по ненастроенной линии передачи (согласованной линии), то в первую очередь следует настроить на рабочую частоту передатчика антенну и только после этого приступать к согласованию линии передачи с антенной. При несоблюдении такой последовательности в настройке антенны в линии передачи всегда будут иметь место остаточные стоячие волны и точное согласование не будет достигнуто.

    Часто возникает необходимость произвести простейшую проверку исправности передатчика RC, исправен ли он и его антенна, излучает ли передатчик в эфир электромагнитные волны. В этом случае большую помощь окажет простейший индикатор электромагнитного поля. С его помощью можно проверить работу выходного каскада любого передатчика используемого в моделизме в диапазоне от нескольких МГц и до 2,5 ГГц. Им можно так же проверить работу сотового телефона на передачу.

    В основе приборчика применён детектор с удвоением напряжения на СВЧ диодах типа КД514 советского производства. Принцип работы понятен из принципиальной схемы. К точке соединения диодов подключается антенна длиной 20.....25 см из проволоки диам. 1.....2 мм. К диодам подключен фильтрующий конденсатор (трубчатый, керамический) емкостью примерно 2200 пкФ. Диоды с конденсатором подпаиваются к клеммам микроамперметра, который является прибором индикации наличия электромагнитного поля. Катод правого по схеме диода подпаивается к клемме "+" , а анод левого по схеме диода подпаивается к клемме "-". Антенна индикатора может располагаться на расстоянии от нескольких сантиметров (передатчик на 2,4 ГГц или сотовый телефон) до 1 метра,
    если передатчик работает в диапазоне 27.........40 Мгц. Такие передатчики имеют телескопическую антенну.
    Все детали расположены на кусочке текстолита. Фильтрующий конденсатор расположен снизу платки и его на фото не видно.

    Принципиальная схема

    Фотографии.